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A genuinely three-dimensional system, viz. the hyperbolic four-sphere scattering system, is investigated with
classical, semiclassical, and quantum mechanical methods at various center-to-center separations of the
spheres. The efficiency and scaling properties of the computations are discussed by comparisons to the two-
dimensional three-disk system. While in systems with few degrees of freedom modern quantum calculations
are, in general, numerically more efficient than semiclassical methods, this situation can be reversed with
increasing dimension of the problem. For the four-sphere system with large separations between the spheres,
we demonstrate the superiority of semiclassical versus quantum calculations, i.e., semiclassical resonances can
easily be obtained even in energy regions which are unattainable with the currently available quantum tech-
niques. The four-sphere system with touching spheres is a challenging problem for both quantum and semi-
classical techniques. Here, semiclassical resonances are obtained via harmonic inversion of a cross-correlated
periodic orbit signal.
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I. INTRODUCTION

The breakthrough for the semiclassical quantization of
chaotic systems was the development of periodic orbit theory
[1,2]. In Gutzwiller’s trace formula the density of states is
expressed as an infinite sum over all isolated periodic orbits
of the classical system. Although the periodic orbit theory is
in principle valid for systems with an arbitrary number of
degrees of freedom, applications have, for practical reasons,
so far mostly been restricted to two-dimensional systems.
The main difficulties are, first, the numerical periodic orbit
search, which becomes more difficult in multidimensional
systems, and, second, the fact that the semiclassical trace
formula usually does not converge. The convergence prob-
lems can be solved, e.g., with cycle expansion[3–5] or har-
monic inversion[6–8] techniques, and both methods have
been successfully applied to the three-disk billiard as a pro-
totype model of a two-dimensional hyperbolic scattering sys-
tem. Practical applications of periodic orbit theory to three-
dimensional systems are very rare. For the three-dimensional
Sinai billiard extensive quantum computations have been
performed and the quantum spectra have been analyzed in
terms of classical periodic orbits[9,10]. However, no semi-
classical eigenstates have been calculated from the set of
periodic orbits. Semiclassical resonances have been obtained
for the three-dimensional two- and three-sphere scattering
systems[11] but for these systems all periodic orbits lie in a
one- or two-dimensional subspace.

In this paper we investigate the scattering of a particle on
four equal spheres centered at the corners of a regular tetra-
hedron. Classical and semiclassical as well as quantum me-
chanical methods will be applied to the four-sphere system at
various center-to-center separations of the spheres. The four-
sphere system can be regarded as the simplest extension of
the three-disk repellor to three-dimensional space with a set
of genuinely three-dimensional periodic orbits. Chaotic prop-
erties of the four-sphere system have been verified experi-
mentally by the observation of fractal structures via optical
light-scattering on the spheres[12,13].

When solving two- and three-dimensional systems with
both quantum and semiclassical methods it is interesting to
study the scaling properties of the quantization methods with
the number of degrees of freedom, and to compare the effi-
ciency of the various algorithms. The numerical effort for the
quantization of nonintegrable systems usually increases
strongly with the number of degrees of freedom, and there-
fore efficient quantization techniques are highly desirable. A
large variety of quantum mechanical and semiclassical meth-
ods have been developed. The direct solution of
Schrödinger’s equation is possible, e.g., by time-dependent
wave packet expansions or numerical diagonalization of the
Hamiltonian in a complete basis set. Exact quantum me-
chanical calculations usually require storage of multidimen-
sional wave functions and a computational effort that grows
exponentially with the number of coupled degrees of free-
dom. These methods are therefore feasible for systems with
relatively few degrees of freedom. As an alternative to exact
quantum calculations, approximate, e.g., semiclassical, meth-
ods can be used. Gutzwiller’s trace formula can be applied to
systems with an arbitrary number of degrees of freedom,
however, the number of periodic orbits and the numerical
effort needed to find them usually increases very rapidly with
increasing dimension of the phase space. As a matter of fact,
Gutzwiller’s periodic orbit theory has been applied almost
exclusively to systems with two degrees of freedom, viz. the
anisotropic Kepler problem[1,14], the hydrogen atom in a
magnetic field [15], and two-dimensional billiards
[3,4,16,17]. For these systems direct quantum mechanical
computations are usually more powerful and efficient than
the semiclassical calculation of spectra by means of periodic
orbit theory. The four-sphere system is an example where
semiclassical methods turn out to be superior to direct quan-
tum mechanical computations[18], i.e., semiclassical reso-
nances can easily be obtained even in energy regions which
are unattainable with the presently known quantum tech-
niques.
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The paper is organized as follows. In Sec. II we investi-
gate the classical dynamics of the four-sphere system. The
symbolic code is introduced and its symmetry reduction by
means of the tetrahedra groupTd is discussed. The periodic
orbits are found in a systematic way by an efficient numeri-
cal periodic orbit search, and the pruning of orbits at small
separations of the spheres is analyzed. In Sec. III we intro-
duce the semiclassical techniques for periodic orbit quanti-
zation, viz. the cycle-expansion method, the harmonic inver-
sion method, and the extension of harmonic inversion to
cross-correlated periodic orbit signals. In Sec. IV we present
the method applied for the exact quantum mechanical calcu-
lation of the resonances. In Sec. V we show the results for
the semiclassical and quantum resonances at various separa-
tions of the spheres. The results are discussed with special
emphasis on the comparison of the efficiency of the various
methods. Some concluding remarks are given in Sec. VI.

II. CLASSICAL DYNAMICS: THE PERIODIC
ORBITS OF THE FOUR-SPHERE SYSTEM

The four-sphere system is a genuinely three-dimensional
billiard where the systematic periodic orbit search is a non-
trivial task. In this section we first develop the symbolic
dynamics of orbits and the symmetry reduction using the
tetrahedra group, and then discuss the numerical periodic
orbit search and the calculation of the periodic orbit param-
eters.

A. Symbolic code and symmetry reduction

The four-sphere system discussed here consists of four
equal spheres with radiusa centered at the corners of a regu-
lar tetrahedron. We choosea=1 in what follows. The system
is then solely determined by the center-to-center separation
R. The four-sphere system with large center-to-center sepa-
ration R@2a and with touching spheressR=2ad are shown
in Figs. 1(a) and 1(b), respectively.

In full coordinate space each orbit can be described by the
infinite sequence of spheres where the orbit is scattered. By

labeling the spheres ashA,B,C,Dj, it is possible to code a
periodic orbit as the infinite cycles of a limited length string
consisting of the sphere labels which we call here the itiner-
ary code of the orbit. For a given string length, all combina-
tions of the lettershA,B,C,Dj correspond to a physical orbit,
with the exception that two consecutive letters in the itiner-
ary code cannot be identical and, for short center-to-center
separationR*2a, some orbits may be excluded by pruning
(see Sec. II C). Several itinerary code strings may represent
the same periodic orbit or a similar orbit obtained by a sym-
metry operation, i.e., rotation or reflection. For example, the
itinerary codesABC andBCA correspond to the same peri-
odic orbit by cyclic permutations, and the orbitsABC, ACD,
ABD, andBCD can be mapped onto each other by rotations.

By using the symmetry propertiesTd of the tetrahedron
the system can be reduced to its fundamental domain. The
symmetry reduced orbits can be described by a ternary al-
phabet of symbols “0,” “1,” and “2,” which are the three
fundamental orbits, i.e., the symmetry reductions of the
shortest orbits scattered between two, three, and four
spheres, respectively. Therefore, we shall use the symbol 0
for returning back to the previous sphere after one reflection,
symbol 1 for the reflection to the other third sphere in the
same reflection plane of the orbit, and symbol 2 for the re-
flection to the other forth sphere out of the reflection plane of
the orbit. The reflection plane is defined by the centers of the
first threedifferentspheres toward back in the history of the
itinerary code of the orbit. The primitive periodic orbits of
cycle lengthnp in the fundamental domain are now given by
those periodic sequences ofnp symbols 0, 1, and 2 which are
free of subcycles(e.g., the code0101 with subcycle01 is not
primitive, we will neglect the line indicating periodicity in
the following). The periodic orbits do not change by cyclic
permutations of the code. We will choose the code word with
the lowest numerical value as the representative(e.g., 0112
instead of 1120). With these rules every symmetry reduced
periodic orbit of the four-sphere system is uniquely described
by a symbolic code. However, at small separations of the
spheres some physical orbits are pruned as discussed below
in Sec. II C.

From theh0,1,2j code of the symmetry reduced orbits the
hA,B,C,Dj itinerary code can be obtained as follows. We
choose the plane spanned by the spheressA,B,Cd as the
initial reflection plane and start the journey with the se-
quenceAB. Then the rules given above are applied for the
symbols 0, 1, and 2 to guide the orbit to the subsequent
spheres. Note that symbolic codes which contain only the
symbols 0 and 1 lie in the two-dimensionalsA,B,Cd plane,
i.e., they correspond to the set of orbits with a binary sym-
bolic code, which has been well established for the three-
disk [3,4] and three-sphere system[11]. Orbits including the
symbol 2 are genuinely three-dimensional orbits. In Table I
we present the symbolic codes of all periodic orbits up to
cycle lengthsnp=3 of the symmetry reduced code. Note that
no subcycles and cyclic permutations exist on the list. In the
second column, the corresponding itinerary codesp̃ of the
symbolic codes of column 1 are given, which have been
obtained by following the rules explained above. The last
column in Table I shows the symmetry classes of the orbits.

FIG. 1. The four-sphere system consists of four equal spheres
centered at the corners of a regular tetrahedron.(a) Large center-to-
center separationR@2a. (b) Touching four-sphere system withR
=2a.
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The Td group has 1e, 3 C2, 8 C3, 6 S4, and 6sd, in total 24
different symmetry elements. Each orbit(except the one rep-
resented by 0) can be assigned by one and only one of the
symmetry elementshe,sd,C2,C3,S4j of the groupTd. Note
that periodic orbits in the fundamental domain, and thus their
symmetry reduced symbolic codes, are two-, three-, or four-
times shorter than the orbits(and the itinerary codes) in the
full coordinate space when they belong to the symmetry
classhsd,C2j, C3, or S4, respectively. The symbolic length of
orbits belonging to symmetry classe, i.e., the identity is
unchanged under symmetry reduction.

B. Numerical periodic orbit search

Each trajectory of the four-sphere system is completely
determined by the reflection points on the surfaces of the
spheres, which on each sphere can be described by two
spherical coordinatesu and f. For a given itinerary code
arbitrarily chosen reflection points on the spheres connected
by straight lines in the correct order result in a periodic but
not necessarily a physical orbit. The true physical orbit, for
which the incident and reflection angle at each reflection
point must coincide, can be obtained by direct application of
Hamilton’s principle, i.e., the orbital length, which is propor-
tional to the classical action, becomes a minimum when the
reflection points are varied. The length function of an orbit
with a total number ofN reflection points depends on the 2N
variableshui ,fij with i =1, . . . ,N. Numerically, the minimiz-
ing of the length

L = Lsu1,f1,u2,f2, . . . ,uN,fNd s1d

can be achieved by applying the well established quasi-
Newton method[19], which is implemented, e.g., in the
NAG-library [20]. The required gradient of the length func-
tion =L has been derived analytically.

As mentioned above the length of periodic orbits in full
coordinate space can be two, three, or four times the length
of the corresponding symmetry reduced orbit in the funda-
mental domain(see Table I). As the required computational
effort for the quasi-Newton method increases rapidly with
the dimensionality of the problem, it is desirable to exploit
the symmetry properties of the tetrahedra group and to di-
rectly search for the periodic orbits in the fundamental do-
main. To this end for a symmetry reduced orbit with cycle
length np the reflection point on the spherenp+1 is associ-
ated with the reflection point on the first sphere by an appro-
priate transformation, i.e., one of the 24 possible symmetry
transformations of the tetrahedra groupTd. The length mini-
mization is now applied to the trajectory segments between
the first sphere and spherenp+1, i.e., the dimensionality of
the length minimization of periodic orbits in the fundamental
domain is reduced to 2np for all primitive orbits with cycle
lengthnp.

Once a periodic orbit has been found its orbital param-
eters required for semiclassical periodic orbit quantization
can be calculated. The most important ones are the mono-
dromy matrix and the Maslov index of the orbit. The Maslov
index increases by 2 at each reflection on a hard sphere, i.e.,
mpo=2np for an orbit with cycle lengthnp. The calculation of
the monodromy matrixM po for the periodic orbits of three-
dimensional billiards has been investigated in Refs.[9,21].
M po is a symplectics434d matrix with eigenvaluesl1,
1 /l1, l2, and 1/l2. For the hyperbolic four-sphere systeml1
andl2 are either both real or the orbits are loxodromic, i.e.,
the eigenvalues ofM po are a quadruplehl ,1 /l ,l* ,1 /l*j
with l being a complex number. For the four-sphere system
with radiusa=1 and center-to-center separationR=6 the or-
bital lengths and stability parameters for all primitive peri-
odic orbits with cycle lengthnpø3 are presented in Table II.
For that sphere separationsR=6ad we have calculated the
complete set of primitive periodic orbits with symbol lengths
npø14, numbering 533 830 orbits in total. For sphere sepa-
rationR=2.5a we also calculated all primitive periodic orbits
with symbol lengthsnpø14, and in addition all orbits with
symbol lengthsnpø22 and physical lengthsLø12, which
allows for the construction of a periodic orbit signal with
length Lmax=12 used for the semiclassical quantization in
Sec. V B.

C. Pruning of orbits

For center-to-center separationsR.2.0482a between the
spheres there is a one to one correspondence between the
symbolic codes and the primitive periodic orbits. However,
when the separation is reduced below that value some orbits
become unphysical, i.e., the symbolic dynamics is pruned.
The pruning of orbits has been investigated in detail for the
three-disk scattering system[22,23]. For the four-sphere sys-
tem the mechanism is similar: As illustrated in Fig. 2, an
orbital segment may(a) pass through one of the spheres, or
(b) a reflection may occur inside one of the spheres. For a
periodic orbit search at small separation between the spheres
all orbits obtained numerically by minimizing the length
must be checked whether pruning occurs or not. For touch-

TABLE I. Symbolic codep of the symmetry reduced periodic
orbits with cycle lengthsnpø3 and the itinerary codesp̃ of the
orbits in full coordinate space. The columnhp̃ gives the symmetry
type of the orbits.

p p̃ hp̃

0 AB sd, C2

1 ABC C3

2 ABDC S4

01 ABAC sd

02 ABADAC C3

12 ABCDBADC S4
001 ABABCBCAC C3
002 ABABDBDCDCAC S4
011 ABACBC sd

012 ABACDC C2

021 ABADBDCBC C3
022 ABADCDBABCDC S4
112 ABCADC sd

122 ABCDACBDC C3
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ing spheressR=2ad all pruned orbits with symbol lengths
npø7 and their pruning typesa or b are presented in Table
III. Pruning exists for orbits with symbol lengthsnpù5, i.e.,
the symbolic dynamics is complete only fornpø4. Further-
more, periodic orbits with long heads of 0 symbols in the
code can have accumulation points at finite values of the
physical lengthL. It is impossible to find all orbits beyond
the first accumulation point. We have searched for all peri-
odic orbits of the touching four-sphere system with physical
lengthsLøLmax=3.6, symbol lengthsnpø60, and with the
total number of 1 and 2 symbols in the symbolic code re-
stricted ton1+n2ø10, resulting in about 2.83106 primitive
periodic orbits.

The semiclassical quantization by harmonic inversion of a
cross-correlated periodic orbit signal(see Sec. III C) requires
the knowledge of the expectation values of various linearly
independent classical observablesA along the periodic orbits
[24,25]. We have chosen the observablesA1=r2 andA2=L2,
i.e., we have calculated the averaged squared distance and
squared angular momentum of the periodic orbits of the
touching four-sphere system.

III. SEMICLASSICAL PERIODIC ORBIT THEORY

We now wish to calculate semiclassically the resonances
of the four-sphere scattering system by application of peri-
odic orbit theory. Gutzwiller’s trace formula[1] expresses
the quantum mechanical response function

gqmsEd = o
n

1

E − En + ie
s2d

in terms of the periodic orbits of the underlying classical
system, i.e.,

gsclsEd = g0sEd + o
po

AposEdeiSposEd/", s3d

whereg0sEd is a smooth function of the energy andAposEd
andSposEd are the periodic orbit amplitudes(including phase
information given by the Maslov indices) and classical ac-
tions, respectively. For billiards the classical action depends
linearly on the length of the trajectory and the wave number

TABLE II. Parameters of the symmetry reduced primitive periodic orbitsp with cycle lengthnpø3 of the
four-sphere system with radiusa=1 and center-to-center separationR=6.

p hp L Rel1 Iml1 Rel2 Iml2

0 sd,C2 4.000000 9.89898 0.00000 9.89898 0.00000

1 C3 4.267949 −11.7715 0.00000 9.28460 0.00000

2 S4 4.296322 −4.52562 9.49950 −4.52562 −9.49950

01 sd 8.316529 −124.095 0.00000 88.4166 0.00000

02 C3 8.320300 −37.1479 98.0419 −37.1479 −98.0419

12 S4 8.567170 117.644 0.00000 −102.992 0.00000

001 C3 12.321747 −1240.54 0.00000 868.915 0.00000

002 S4 12.322138 −353.853 976.176 −353.853 −976.176

011 sd 12.580808 1449.55 0.00000 824.981 0.00000

012 C2 12.617350 1192.83 0.00000 −1020.66 0.00000

021 C3 12.584068 1201.43 0.00000 −996.800 0.00000

022 S4 12.619948 −755.582 804.976 −755.582 −804.976

112 sd 12.835715 −496.339 1038.46 −496.339 −1038.46

122 C3 12.863793 −1100.56 0.00000 1219.28 0.00000

TABLE III. All pruned orbits with cycle lengthnpø7 and their
pruning typesa or b (see Fig. 2) of the four-sphere system with
touching spheres,R=2a.

Symbolic code Pruning type

00021 a

000011 a

000021 a

000002 b

0000001 b

0000011 a

0000021 a

0000002 b

FIG. 2. Sketch of the two types of pruning occurring in the
four-sphere system at small separation between the spheres:(a) An
orbital segment passes through one of the spheres.(b) A reflection
occurs inside a sphere.
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k=Î2ME/" with M being the particle mass. For the three-
dimensional four-sphere system the periodic orbit sum as a
function of the wave numberk reads

gskd = o
p

o
r=1

`
wps− 1drnpLpe

ikrLp

Îus2 − lp,1
r − lp,1

−r ds2 − lp,2
r − lp,2

−r du
, s4d

wherenp is the cycle length,Lp the physical length,lp,i are
the eigenvalues of the monodromy matrix, andr is the rep-
etition number of the primitive periodic orbitp. The weight
factors wp result from the symmetry decomposition of the
system[26] and depend on the chosen irreducible subspace
of the spectrum and the symmetry of the periodic orbits. For
the tetrahedra groupTd the values of the weight factorswp
are given in Table IV. In the following we will concentrate
on the subspaceA1, where the weight factors of all orbits are
wp=1.

The semiclassical resonances of the four-sphere system
are given by the poles of the functiongskd. However, it is
well known that the periodic orbit sum(4) does not converge
in those regions where the physical poles are located, and
special techniques must be applied to obtain an analytical
continuation of the periodic orbit sum(4). For the three-disk
system with large center-to-center separationR=6a the
cycle-expansion method[3,4,27] and harmonic inversion
techniques[6,7] have proven to be powerful approaches for
overcoming the convergence problems of the periodic orbit
sum, and both methods can also be successfully applied to
the four-sphere system. However, when pruning of orbits sets
in at small separations, and in particular in the case of touch-
ing disks or spheres, the situation is much more difficult and
subtle, since the direct application of the cycle-expansion
method fails. The two-dimensional closed three-disk billiard
is a bound system, where a few semiclassical eigenenergies
have been obtained in Ref.[14] using the cycle expansion in
combination with a functional equation. This method is not
valid for open systems and cannot be extended to the four-
sphere system which remains open even in the case of touch-
ing spheres[12,13]. Nevertheless, the harmonic inversion of
cross-correlated periodic orbit signals[24,25] has been suc-
cessfully applied to the closed three-disk system[28,29] and
this method will also serve as a powerful tool for the three-
dimensional four-sphere system. We will now introduce the
quantization methods. Applications to the four-sphere system
and comparisons with quantum mechanical results will be
presented in Sec. V.

A. The cycle-expansion method

The periodic orbit sum in Gutzwiller’s trace formula does
usually not converge in the energy regions of physical inter-
est. However, for some systems, e.g., the three-disk scatter-
ing billiard, semiclassical energies, or resonances can be ob-
tained with the help of the cycle-expansion method[3–5]. If
the periodic orbits can be associated to a symbolic dynamics
the Gutzwiller-Vorosz function [1,30] can be expanded ac-
cording to increasing cycle length of the orbits. In this ex-
pansion the contributions of long periodic orbits may be ap-
proximately shadowed by the combined contributions of
shorter orbits. In this case the cycle expansion can converge
rapidly.

For billiards the Gutzwiller-Voros zeta function can be
written as

ZGVsk;zd = expH− o
p

o
r=1

`
1

r

s− zdrnpeirkLp

ÎudetsM p
r − 1du

J , s5d

with an additional parameterz which must be set toz=1. The
cycle expansion is achieved by takingz as a bookkeeping
variable and expanding Eq.(5) as a truncated power series in
z. The semiclassical resonances are obtained as the zeros(in
the variablek) of the cycle-expandedz function (5) with
againz=1. In our computations for the four-sphere system
we use cycle expansions up to ordernmax=12.

B. Semiclassical quantization by harmonic inversion

An alternative method for semiclassical quantization is
based on the observation that the extraction of eigenvalues
from Gutzwiller’s trace formula can be reformulated as a
signal processing task[6–8]. The harmonic inversion method
is briefly explained as follows. The Fourier transform of the
function gskd in Eq. (4) yields the semiclassical signal

CscsLd = o
p

o
r=1

`
s− 1drnpLp

ÎudetsM p
r − 1du

dsL − rLpd, s6d

as a sum ofd functions. The central idea of semiclassical
quantization by harmonic inversion is to adjust the semiclas-
sical signalCscsLd with finite lengthLøLmax to its quantum
mechanical analog

CqmsLd =
i

2p
E

−`

+`

o
n

dn

k − kn + ie
e−ikLdk= o

n

dne
−iknL,

s7d

where the amplitudesdn and the semiclassical eigenvalueskn
are free adjustable complex parameters. This is achieved by
signal processing[31,32] of the semiclassical signalCscsLd.
Numerical recipes for extracting the parametershdn,knj by
harmonic inversion of thed function signal(6) are given in
Refs.[8,33].

Note that the cycle expansion does usually not work for
systems that are highly pruned because the condition that
contributions of longer orbits are shadowed by combinations
of short orbits is not fulfilled. The shadowing is, however,
not required for the harmonic inversion method which is

TABLE IV. Weight factorswp for the periodic orbit sum[Eq.
(4)] of the four-sphere system with symmetries of the tetrahedra
groupTd.

Td e C3 C2 S4 sd

A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1
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based on signal processing of the semiclassical periodic orbit
signal CscsLd in Eq. (6), with L the orbit length. Therefore
the periodic orbits are naturally arranged and truncated by
the orbit length rather than symbolic length or Maslov indi-
ces as for the cycle-expansion method.

C. Harmonic inversion of cross-correlated periodic orbit
signals

The method of semiclassical quantization by harmonic in-
version of cross-correlated periodic orbit signals is a gener-
alization of the quantization scheme presented in Sec. II B.
The idea is to use the classical average values of a set of
linearly independent classical observables to construct a
cross-correlated signal, whose informational content is sig-
nificantly increased as compared to the one-dimensional sig-
nal, and therefore should lead to semiclassical spectra with
improved resolution.

The numerical tools for the harmonic inversion of cross-
correlated periodic orbit signals have already been well es-
tablished[25], and therefore we only briefly review the basic
ideas and refer the reader to the literature for details. For
simplicity but without loss of generality, we focus on billiard
systems, where the shape of the orbits is independent of the
energyE, and the classical action of orbits readsS="kL,
with k the wave number andL the physical length. The start-
ing point is to introduce a weighted response function in
terms ofk

gaa8skd = o
n

banba8n

k − kn + ie
, s8d

wherekn is the eigenvalue of the wave number of eigenstate
unl and

ban = knuÂaunl s9d

are the diagonal matrix elements of a chosen set ofN linearly

independent operatorsÂa, a=1,2, . . . ,N. The Fourier trans-
form of Eq. (8) yields theN3N cross-correlated signal

Caa8sLd =
i

2p
E

−`

+`

gaa8skde−ikLdk= o
n

banba8ne
−iknL.

s10d

A semiclassical approximation to the cross-correlated signal
(10) has been derived in Refs.[24,34]. The cross-correlated
periodic orbit signal reads

Caa8
sc sLd = o

p
o
r=1

` aa,paa8,ps− 1drnpLp

ÎudetsM p
r − 1du

dsL − rLpd, s11d

where r is the repetition number counting the traversals of
the primitive orbit, andM p is the monodromy matrix of the
primitive periodic orbit. The weight factorsaa,p are classical
averages over the periodic orbits

aa,p =
1

Lp
E

0

Lp

AafqsLd,psLdgdL, s12d

with Aasq ,pd the Wigner transform of the operatorÂa. Semi-
classical approximations to the eigenvalueskn and eventually

also to the diagonal matrix elementsknuÂaunl are now ob-
tained by adjusting the semiclassical cross-correlated peri-
odic orbit signal(11) to the functional form of the quantum
signal (10). The numerical tool for this procedure is an ex-
tension of the harmonic inversion method to the signal pro-
cessing of cross-correlation functions[35,36]. The advantage
of using the cross-correlation approach is based on the real-
ization that the total amount of independent information con-
tained in theN3N signal isNsN+1d multiplied by the length
of the signal, while the total number of unknowns(hereban
andkn) is sN+1d times the total number of poleskn. There-
fore the informational content of theN3N signal per un-
known parameter is increased(as compared to the one-
dimensional signal) by roughly a factor ofN, and the cross-
correlation approach should lead to a significant
improvement of the resolution.

IV. QUANTUM CALCULATIONS

Schrödinger’s equation for the three-disk or the four-
sphere system is a free wave equation in two or three dimen-
sions, fD+k2gCskd=0, with Dirichlet boundary conditions,
i.e., Cskd=0 on the surface of the disks or spheres, respec-
tively. Although the problem looks simple the solution is a
nontrivial task and, most importantly, the numerical effort
increases extremely rapidly with the dimension of the sys-
tem.

For the three-disk system the exact quantum resonances
can be obtained as roots of the equation[27,37]

det M skdmm8
3-disk= 0, s13d

with m andm8 nonzero integer numbers which can be trun-
cated by an upper angular momentummmax*1.5ka [27].
With matricesM skdmm8

3-disk of dimension up to,s4003400d,
Eq. (13) allows for the efficient numerical calculation of
resonances in the region 0øRekaø250. The matrix ele-
ments ofM skdmm8

3-disk in Eq. (13) can be written analytically in
terms of Bessel and Hankel functions. Explicit expressions
are given in Ref.[27]. The quantum resonances are obtained
by a numerical root search in the complexk plane[19].

Similarly, exact quantum resonances of the three-
dimensional four-sphere scattering system can be obtained as
roots of the equation

det M skdlm,l8m8
4-sphere= 0, s14d

with 0ø l , l8ø lmax andm,m8=0,3,6,9, . . . ,lmax for the sub-
spaceA1 and A2. An explicit expression for the matrix ele-
ments ofM skdlm,l8m8

4-spherehas been derived[11] and reads

MAIN et al. PHYSICAL REVIEW E 69, 056227(2004)

056227-6



M skdlm,l8m8
4-sphere= dll8dmm8 +

3

2
Î4pi l8−l j lskad

hl8
s1dskad

gmgm8

3 o
l̃=0

`

Csl,m,l8,m8, l̃ ;u0,b0dh
l̃

s1dskRd, s15d

with

Csl,m,l8,m8, l̃ ;u0,b0d

= o
M=−l8

l8

i l̃Îs2l + 1ds2l8 + 1ds2l̃ + 1dS l̃

0

l8
0

l

0
Ds− 1dM

3fdm8M
l8 sb0d ± s− 1dm8d−m8,M

l8 sb0dg

3Fs− 1dmYl̃,m−Msu0,0dS l̃

m− M

l8
M

l

− m
D

± Yl̃,−m−Msu0,0dS l̃

− m− M

l8
M

l

m
DG , s16d

where the ± signs refer to the subspaceA1 and A2, respec-
tively. The anglesu0 andb0 in Eq. (16) are obtained from

cossu0d = −
2
Î6

, sinsu0d =
1
Î3

,

cossb0d = −
1

3
, sinsb0d =

2

3
Î2,

and thedmm8
j sbd are the matrix elements of finite rotations

[38],

dmm8
j sbd = k jmue−ibJyu jm8l.

The large brackets in Eq.(16) refer to 3j symbols[38], and
the values ofgm are defined as

gm = 51/Î2 for m= 0

1 for m= 3,6,9, . . . ,l

0 otherwise.

Note thatgm=0 should readg0=1/Î2 instead ofÎ2 in Eq.
(38) of Ref. [11]. Similar as for the three-disk system the
angular momentum[quantum numbersl and l8 in Eq. (14)]
can be truncated atlmax*1.5ka to achieve convergence of
the calculation.

It is important to note that the computation of the quan-
tum mechanical resonances of the three-dimensional four-
sphere scattering system becomes much more expensive than
for the two-dimensional three-disk system. First of all, the
calculation of each matrix elementM skdlm,l8m8

4-spherein Eq. (15)

requires the summation over quantum numbersl̃ and[via Eq.
(16)] M. To accelerate the calculation of the matrix(15) at
various values ofk we have calculated and stored the values

of Csl ,m, l8 ,m8 , l̃ ;u0,b0d in Eq. (16) separately. Equation
(16) does not depend on the sphere separationR, and there-
fore the storedC values can be used in calculations of spec-

tra with arbitraryR. However, the calculation of the matrix

elements in Eq.(15) still requires the summation overl̃.
The second problem of solving Eq.(14) is the scaling of

the dimension of the matrixM skdlm,l8m8
4-sphere, which is anN3N

matrix with

N = 1
6slmax+ 2dslmax+ 3d,

i.e., N scales asN,k2 for the four-sphere system, as com-
pared toN,k for the three-disk system, Eq.(13). For ex-
ample, in the regionka<200 the required matrix dimension
is N*300 for the three-disk system, as compared toN
*15 000 for the four-sphere system. For the four-sphere sys-
tem with center-to-center separationsR=6a, R=2.5a, and the
touching spheresR=2a we have computed the quantum
resonances in the region 0øRe kaø60 by solving Eq.(14)
with matrices of dimension up tos175131751d. The results
will be presented in Sec. V. With currently available com-
puter technology it is impossible to significantly extend the
quantum calculations for the four-sphere system to the region
Re ka@60 using Eq.(14). The efficiency of the semiclassi-
cal and quantum methods for the four-sphere system will be
compared and discussed in Sec. V D.

V. RESULTS AND DISCUSSION

We will now present and discuss the results of our semi-
classical and quantum computations for the four-sphere sys-
tem with large sphere separationR=6a intermediate separa-
tion R=2.5a, and touching spheresR=2a. In Sec. V D we
will compare and discuss the efficiency of the various quan-
tization methods.

A. Sphere separationR=6a

The quantum mechanical and semiclassicalA1 resonances
of the four-sphere system with radiusa=1 and center-to-
center separationR=6 are presented in Fig. 3. The quantum
resonances marked by the squares have been obtained by
solving Eq.(14) with matricesM skdlm,l8m8

4-sphereof dimension up
to s113431134d, which is sufficient only to obtain con-
verged results in the region Rek&50 [see Fig. 3(a)]. By
contrast, the semiclassical resonances can easily be obtained
in a much larger region, e.g., Rekø250 shown in Fig. 3(b).
The crosses mark the zeros of the cycle-expanded
Gutzwiller-Voros z function (5). The cycle expansion has
been truncated at cycle lengthnmax=7, which means that a
total set of just 508 primitive periodic orbits are included in
the calculation. The plus symbols mark the semiclassical
resonances obtained by harmonic inversion of the periodic
orbit signal(6) with signal lengthLmax=60 constructed from
the set of 533 830 primitive periodic orbits with cycle
lengthsnpø14.

In the region Rekø50 [Fig. 3(a)] the quantum and semi-
classical resonances agree very well, with a few exceptions.
The first few quantum resonances in the uppermost reso-
nance band are narrower, i.e., closer to the real axis than the
corresponding semiclassical resonances. A similar discrep-
ancy between quantum and semiclassical resonances has al-
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ready been observed in the three-disk system[4,27]. Further-
more, in the region Rek,15 and Imk,−0.5 several
quantum resonances have been found[see the squares in Fig.
3(a)], which seem not to have any semiclassical analog.
These resonances are related to the diffraction of waves at
the spheres, and its semiclassical description requires an ex-
tension of Gutzwiller’s trace formula and the inclusion of
diffractive periodic orbits[39,40]. The semiclassical reso-
nances obtained by either harmonic inversion or the cycle-
expansion method[the plus symbols and crosses in Fig. 3(b),
respectively] are generally in perfect agreement, except for
the very broad resonances that lie deep in the complex plane,
i.e., in the region Imk&−0.8.

B. Sphere separationR=2.5a

The semiclassical quantization becomes more and more
demanding with decreasing separation between the spheres.
The reason is that the shadowing of longer orbits by combi-
nations of shorter orbits in the cycle-expanded Gutzwiller-
Voros z function becomes less accurate and the construction
of the periodic orbit signal of lengthLøLmax used for the

harmonic inversion method requires more and more periodic
orbit data. However, both semiclassical quantization tech-
niques, i.e., cycle expansion and harmonic inversion can still
be successfully applied at significantly reduced separation
between the spheres.

As an example of an intermediate sphere separation we
discuss the caseR=2.5a, where the spheres are rather close,
however, the symbolic dynamics of the periodic orbits is still
complete, i.e., no orbits are pruned. The graphical compari-
son of the quantum mechanical and semiclassical resonances
in the region 0øRe kaø100 is given in Fig. 4. The semi-
classical resonances shown as plus symbols have been ob-
tained by harmonic inversion of a periodic orbit signal of
length Lmax=12. The signal has been constructed using all
primitive periodic orbits with symbol lengthsnpø14 and
parts of the orbits with symbol lengths 15ønpø22, in total
a set of about 4.63106 orbits. The crosses in Fig. 4 mark the
semiclassical resonances obtained by 12th order cycle expan-
sion using the complete set of 69 706 primitive periodic or-
bits with symbol lengthsnpø12. The exact quantum reso-
nances have been obtained in the region 0øRe kø60 by
solving Eq. (14) with matrix dimensions up tos1751
31751d.

In the region Rek&60 the resonances obtained by the
two semiclassical methods are in excellent agreement except
for the imaginary parts of some resonances very deep down
in the complex plane. In this region the semiclassical reso-
nances agree well with the exact quantum mechanical reso-
nances, the deviations are due to the semiclassical approxi-
mation, i.e., the first-order" expansion in the semiclassical
trace formula. As in the caseR=6a (Sec. V A) some quan-
tum resonances in the region Rek&10 are related to the
diffraction of waves at the spheres and do not have a semi-
classical analog without the appropriate extension of the pe-
riodic orbit theory[39,40]. At Re k*60 the agreement be-
tween resonances obtained semiclassically via cycle
expansion and harmonic inversion becomes less perfect, es-
pecially for some broad resonances with Imk&−1.1. Unfor-

FIG. 3. A1 resonances in the complexk plane of the four-sphere
system with radiusa=1 and center-to-center separationR=6.
Squares: Quantum computations. Crosses and plus symbols: Semi-
classical resonances obtained by cycle expansion and harmonic in-
version methods, respectively.

FIG. 4. A1 resonances in the complexk plane of the four-sphere
system with radiusa=1 and center-to-center separationR=2.5.
Squares: Quantum computations. Crosses and plus symbols: Semi-
classical resonances obtained by cycle expansion and harmonic in-
version methods, respectively.
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tunately, no quantum results are currently available for
Re k.60 to judge the quality and accuracy of the semiclas-
sical computations in that region.

C. Four touching spheres„R=2a…

The semiclassical quantization of the four-sphere system
becomes even more difficult when the spheres are further
moved together and the symbolic dynamics becomes pruned
(see Sec. II C). In particular, the case of touching spheres
with R=2a is a real challenge for the following reason. For
touching spheres the symbolic dynamics is pruned in a simi-
lar way as in the three-disk problem[23]. The closed three-
disk billiard is a bound system, and some eigenenergies have
been extracted by either combining the cycle-expansion
method with a functional equation[14] or by the harmonic
inversion method[28,29]. However, contrary to the closed
three-disk system the four touching spheres do not form a
bound system, which means that the method of Ref.[14]
combining the cycle-expansion method with a functional
equation cannot be applied, and thus the touching four-
sphere system cannot be quantized with the help of the
cycle-expansion method. Nevertheless, we will now demon-
strate that the harmonic inversion method applied to a cross-
correlated periodic orbit signal can reveal at least some of the
low-lying semiclassical resonances.

For the construction of the periodic orbit signal we have
calculated about 2.83106 orbits of the touching four-sphere
system with lengthsL,Lmax=3.6. (Note that the signal is
incomplete as discussed in Sec. II C.) For the application of

the cross-correlation technique we use the operatorsÂ1=1

(the identity), the squared angular momentumÂ2=L2, and

the squared distance from the originÂ3=r2. Because the sig-
nal is incomplete and rather short the results of the harmonic
inversion are less perfectly converged than for the four-
sphere system with larger sphere separation, i.e., the ampli-
tudesdn in Eq. (7) may deviate from the ideal valuesdn=1
for true physical resonances anddn=0 for spurious reso-
nances which must be omitted. As a criterion to accept reso-
nances we have chosen the conditionudn−1u,0.5.

The results of our semiclassical and quantum computa-
tions for the four touching spheres are presented in Fig. 5.
The crosses mark the semiclassical resonances obtained by
harmonic inversion of the one-dimensional periodic orbit
signal. The low number of crosses indicates that the conver-
gence of the one-dimensional signal is not very satisfactory.
The plus symbols show the resonances obtained by harmonic
inversion of thes333d cross-correlated periodic orbit signal

using the operatorsÂ1=1, Â2=L2, and Â3=r2. With the
cross-correlation technique the convergence properties have
been significantly improved compared to the analysis of the
one-dimensional signal. The real parts of the semiclassical
resonances agree well with the real parts of the exact quan-
tum mechanical resonances marked by the squares in Fig. 5.
The agreement between the imaginary parts is, however, less
perfect. Some quantum resonances in Fig. 5 do not have a
semiclassical counterpart. Those resonances with Rek,10
are probably related to the diffraction of waves at the spheres

as discussed above, i.e., they cannot be explained without
extensions of the semiclassical theories applied in this paper.

D. Efficiency of the semiclassical and quantum algorithms

For the four-sphere system as an example of a physical
system with three degrees of freedom we now wish to dis-
cuss and compare the efficiency of the semiclassical and
quantum computations. As mentioned in the Introduction
(Sec. I) the efficiency of quantum computations usually de-
creases rapidly with the number of degrees of freedom of the
physical system. It is an interesting and important question
whether semiclassical methods can beat the efficiency of
quantum computations with increasing dimension of the
problem. Although there is not much hope and evidence that
this is generally true, because of the exponential proliferation
of periodic orbits in chaotic systems, it can be true for certain
specific systems. An example for the superiority of semiclas-
sical over quantum mechanical calculations is the four-
sphere system with large sphere separation, e.g.,R=6a,
where semiclassical resonances can easily be obtained even
in energy regions which are out of reach for the presently
known quantum techniques[18]. To understand this it is in-
structive to study the expense and scaling properties of the
quantum and classical computations for the three-disk and
four-sphere system.

As explained in Sec. IV exact quantum resonances of the
three-disk and four-sphere systems can be obtained as roots
of Eqs. (13) and (14), respectively, with angular quantum
numbers truncated atlmax*1.5ka. The calculation of the ma-
trix elementsM skdlm,l8m8

4-spherein Eq. (14) is much more expensive
than for the matrix elementsM skdmm8

3-disk in Eq. (13). However,
the serious problem of solving Eq.(14) is the scaling of the
dimension of the matrixM skdlm,l8m8

4-sphere, which is anN3N ma-
trix with N=slmax+2dslmax+3d /6, i.e.,N scales asN,k2 for

FIG. 5. A1 resonances in the complexk plane of the touching
four-sphere system with radiusa=1 and center-to-center separation
R=2. Squares: Quantum computations. Crosses: Semiclassical reso-
nances obtained by harmonic inversion without using cross corre-
lation. Plus symbols: Semiclassical resonances obtained by the har-
monic inversion of as333d cross-correlated periodic orbits signal
using the operators 1(identity), L2, andr2.
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the four-sphere system, as compared toN,k for the three-
disk system, Eq.(13). For example, in the regionka<200
the required matrix dimension isN*300 for the three-disk
as compared toN*15 000 for the four-sphere system. With
currently available computer technology it is, therefore, im-
possible to significantly extend the quantum calculations for
the four-sphere system to the regionka@60 using Eqs.
(14)–(16). Note that the cost of the quantum computations
does not depend on the separationR between the disks or
spheres.

The expense of the semiclassical quantization is basically
given by the required number of periodic orbits which, in
chaotic systems, increases exponentially with the symbolic
or physical length of the orbits. For the three-disk system the
number of symmetry reduced primitive periodic orbits with
symbol length np is given approximately byN,2np/np
whereas it scales asN,3np/np for the four-sphere system.
Contrary to the quantum computations the numerical ex-
pense for the semiclassical quantization, i.e., the required
number of orbits depends on the separationR between the
disks or spheres. For large separationR=6a the cycle-
expansion method is most efficient for the calculation of a
large number of resonances. The reason is that the assump-
tion of the cycle expansion that the contributions of longer
periodic orbits in the expansion of the Gutzwiller-Vorosz
function (5) are shadowed by pseudo-orbits composed of
shorter periodic orbits is very well fulfilled. The harmonic
inversion method also allows for the calculation of a large
number of resonances, but requires a larger input set of pe-
riodic orbits. While for the two-dimensional three-disk sys-
tem the semiclassical and quantum computations are very
efficient, the semiclassical methods are superior to the quan-
tum techniques for the three-dimensional four-sphere system.
The semiclassical calculations can easily be extended to the
region Reka*60 where no quantum results are available
because of the unfavorable scaling of the dimension of the
matrix M lm,l8m8 in Eq. (14). Of course, a more efficient quan-
tum method for the four-sphere system than that of Ref.[11]
may in principle exist. However, to the best of our knowl-
edge no such method has been proposed in the literature to
date. The four-sphere system therefore is an example of a
three-dimensional system where semiclassical methods are
presently superior to exact quantum calculations.

At reduced separationR=2.5a between the disks or
spheres the semiclassical quantization requires an increased
set of periodic orbits to achieve convergence of the cycle-
expansion or harmonic inversion analysis. However, for the
four-sphere system the semiclassical methods are still supe-
rior to the exact quantum computations, i.e., semiclassical
resonances can be obtained in regions which are unattainable
with the quantum methods as can be seen in Fig. 4.

The situation is different for touching spheresR=2a,
which is a challenging system not only for the quantum but
also for the semiclassical computations. The construction of
a long periodic orbit signal is impossible because orbits with
increasing sequences of consecutive 0 symbols in the code
lead to accumulation points in the physical length similar as
for the closed three-disk system[28,29]. The semiclassical

calculations for the touching spheres are therefore at least
about the same or even more expensive than the quantum
computations.

VI. CONCLUSIONS

In summary, we have investigated an open system with
three degrees of freedom, viz. the four-sphere scattering
problem with various sphere separations by means of classi-
cal, semiclassical, and quantum mechanical methods. The
classical system has genuinely three-dimensional periodic or-
bits. In the symmetry reduced fundamental domain, they can
be associated to a ternary symbolic alphabet, which allows
for a systematic periodic orbit search. For large separations
between the spheressR*2.5ad semiclassical resonances
have been obtained by application of the cycle-expansion
technique and the harmonic inversion method. For touching
spheressR=2ad, the symbolic dynamics is pruned and the
cycle expansion does not converge, however, some semiclas-
sical resonances can be revealed by harmonic inversion of a
cross-correlated periodic orbit signal.

Exact quantum mechanical resonances have also been cal-
culated, however, the quantum computations for the three-
dimensional four-sphere system are much more expensive
than for the two-dimensional analog, viz. the three-disk scat-
tering problem. Therefore, the quantum computations had to
be restricted to the region with relatively low wave numbers,
i.e., Reka,60. By analyzing the scaling properties of both
the quantum and semiclassical calculations we have demon-
strated the superiority of semiclassical methods over quan-
tum computations at least for large sphere separations, i.e.,
semiclassical resonances can easily be obtained in energy
regions which at present are unattainable with the established
quantum method. These results may encourage the investiga-
tion of other systems with three or more degrees of freedom
with the goal of developing powerful semiclassical tech-
niques, which are competitive with or even superior to quan-
tum computations for a large variety of systems.

In those regions where exact quantum results for the four-
sphere system are lacking an assessment of the accuracy of
the semiclassical resonances is presently impossible. Higher-
order" corrections have been calculated for two-dimensional
billiard systems [41–43], however, the extension of the
theory to three-dimensional systems is a nontrivial task for
future work.

Those quantum resonances which are related to diffrac-
tion of waves at the spheres have not yet been explained
semiclassically. For the three-disk system diffractive reso-
nances have been obtained with an extended periodic orbit
theory by including the contributions of creeping orbits
[39,40]. It will be interesting to generalize these ideas to the
genuinely three-dimensional four-sphere system.
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